五年级数学必背公式有哪些-

网上有关“五年级数学必背公式有哪些?”话题很是火热,小编也是针对五年级数学必背公式有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

必备公式:

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。

3、速度×时间=路程路程÷速度=时间路程÷时间=速度。

4、单价×数量=总价总价÷单价=数量总价÷数量=单价。

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。

五年级下册数学重点

以下是 为大家整理的关于五年级下册数学概念、常用公式归总的文章,供大家学习参考!

1、分数乘整数的意义与整数乘法的意义相同,即求几个相同加数的和的简便运算。一个数乘分数的意义就是求这个数的几分之几是多少。

如: ×5表示求5个 的和是多少,或者表示 的5倍是多少。

× 表示求 的 是多少。 3× 表示3的 是多少。

2、分数与整数相乘,分母不变,分子和整数相乘的积作分子。

分数与分数相乘,分子与分子相乘,分母与分母相乘,能约分的先约分。

3、一个数乘一个真分数,所得的积一定小于原来的数;

一个数乘一个等于1的数,所得的积等于原来的数;

一个数乘一个大于1的假分数,所得积一定大于原来的数。

4、长方体有6个面,每个面一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等。 有12条棱,12条棱可以分为三组:4条长,4条宽,4条高,长、宽、高分别相等。有8个顶点,每个顶点处由三条棱组成,长、宽、高各一条。

5、正方体有6个面,每个面都相等,都是正方形。有12条棱,12条棱长度相等,叫做正方体的棱长。有8个顶点。正方体是特殊的长方体。

6、长方体的棱长和=(长+宽+高)×4

正方体的棱长和=棱长×12

7、长方体6个面的面积之和叫做长方体的表面积。

长方体上面或下面的面积=长×宽

长方体的表面积=长×宽×2+长×高×2+宽×高×2,用字母表示为:S=2ab+2ah+2bh

8、正方体的6个面的面积之和叫做正方体的表面积。

正方体每个面的面积=棱长×棱长

正方体的表面积=棱长×棱长×6,用字母表示为:S=6a2

9、露在外面的面积=一个面的面积×露在外面的面的个数

10、如果两个数的乘积是1,那么这两个数叫做互为倒数,其中一个数叫做另一个数的倒数。1的倒数是1。0没有倒数。

11、分数除法法则:除以一个数(零除外),等于乘这个数的倒数。

12、当除数<1时,商大于被除数;

当除数=1时,商等于被除数;

当除数>1时,商小于被除数。

13、物体所占空间的大小,叫做物体的体积。常用的体积单位有立方米,立方分米,立方厘米。

容器所能容纳物体的体积,叫做容器的容积。常用的容积单位有升和毫升。

计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。

14、1立方米=1000立方分米1立方分米=1000立方厘米

1立方分米=1升

1升=1000毫升1立方厘米=1毫升

15、长方体的体积=长×宽×高 V=abh

正方体的体积=棱长×棱长×棱长 V=a?

长方体(或正方体)的体积=底面积×高 V=Sh

16、测量不规则形状的物体的体积时,可以将不规则物体放入盛有水的容器中,上升的水的体积或者溢出的水的体积就是这个物体的体积。

17、分数混合运算的顺序和整数混合运算的顺序相同,都是先算乘除法,再算加减法,有括号的先算括号里面的,再算括号外面的。

整数的运算律在分数运算中同样适用。

18、求一个数的几分之几(或百分之几)是多少,用乘法计算;

已知一个数的几分之几是多少,求这个数,用除法计算。

19、表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫百分比、百分率。

20、及格率=及格的人数÷总人数

成活率=成活的棵数÷种植的总棵数

出粉率=面粉的重量÷小麦的重量

合格率=合格的产品数÷产品总数

出勤率=出勤人数÷总人数

命中率=命中次数÷总次数

优秀率=优秀人数÷总人数

发芽率=发芽的种子数÷种子总数

21、小数化成百分数:先把小数点向右移动两位,再在后面添上%。

分数化成百分数:先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数。

百分数化成小数:先去掉%,再把小数点向左移动两位。

百分数化成分数:先把百分数化成分母是100的分数,然后约分、化简;或者先把百分数化成小数,再化成分数。

22、条形统计图能清楚地看出每个项目的数量,并且方便进行比较。

扇形统计图能清楚地看出各部分分别占总量的百分之几。

折线统计图能清楚地看出数量的变化情况。

23、一组数据中出现次数最多的数叫这组数据的众数。

把一组数据从小到大(或从大到小)排列,中间的数叫这组数据的中位数。当一组数据的个数是偶数时,中位数取中间两个数的平均数。

平均数=总数量÷总份数

重点知识回顾

1、单位转化规律:大单位化小单位,乘进率;小单位化大单位,除以进率。

2、常用长度单位:千米、米、分米、厘米、毫米。

1千米=1000米 1米=10分米

1分米=10厘米1厘米=10毫米

3、常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米、平方毫米。

1平方千米=100公顷 1公顷=10000平方米

1平方千米=1000000平方米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

4、常用质量单位:吨、千克、克。

1吨=1000千克 1千克=1000克

5、常用时间单位:年、月、日、时、分、秒。

1年=365天(闰年366天) 1年=12个月

1日=24小时1小时=60分1分=60秒

6、我们学过的平面图形有长方形、正方形、平行四边形、三角形、梯形、圆形等,学过的立体图形有长方体、正方体等。

7、长方形的周长=(长+宽)×2 正方形的周长=边长×4

长方形的长=周长÷2-宽 长方形的宽=周长÷2-长

正方形的边长=周长÷4

8、长方形的面积=长×宽 正方形的面积=边长×边长

平行四边形的面积=底×高 三角形的面积=底×高÷2

梯形的面积=(上底+下底)×高÷2

9、长方形的长=面积÷宽 长方形的宽=面积÷长

平行四边形的底=面积÷高 平行四边形的高=面积÷底

三角形的底=面积×2÷高 三角形的高=面积×2÷底

梯形的高=面积×2÷(上底+下底)

梯形的上底+下底的和=面积×2÷高

梯形的上底=面积×2÷高-下底

梯形的下底=面积×2÷高-上底

10、同分母分数的加减法,分母不变,只把分子相加减,结果约成最简分数。

异分母分数的加减法,先通分,化成分母相同的分数,再加减。

11、分数与除法的关系:被除数÷除数=

12、分数基本性质:分数的分子和分母都乘或除以一个相同的数(0除外),分数的大小不变。

九年义务教育版五年级下数学知识点

五年级下册数学知识要点:

第一单元:图形的变换

1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。

2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。

3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。

第二单元:因数与倍数

1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。

2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。

3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。

4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。

5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。

6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。

8.

四则运算中的奇偶规律:

奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数

偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数

偶数-奇数=奇数

9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。

10. 1既不是质数,也不是合数。

11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。

12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

第三单元:长方体和正方体

1. 正方体也叫立方体。

2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。

3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。

5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。

6. 长方体的棱长总和=(长+宽+高)×4

7. 正方体的棱长总和=棱长×12

8. 长方体六个面的面积总和叫做长方体的表面积。

9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。

10. 长方体的表面积=(长×宽+长×高+宽×高)×2

11. 正方体的表面积=棱长2×6

12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4

13. 长方体的侧面积=底面周长×高

14. 物体所占空间的大小,叫做物体的体积。

15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。

16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。

17. 长方体的体积=长×宽×高;用字母表示是V=abh

18. 正方体的体积=棱长3;用字母表示是V=a3

19. 长方体(或正方体)的体积=底面积×高=横截面积×长

20. 在工程上,1立方米简称1方。

21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

22. 棱长总和相等的长方体或正方体,正方体的体积最大。

23. 1立方米=1000立方分米;1立方分米=1000立方厘米。

24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。

25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。

26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。

27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。

28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。

29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度

30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。

第四单元:分数的意义和性质

1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。

2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。

3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。

4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。

6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。

7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。

8. 分子比分母小的分数叫真分数。真分数小于1。

9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。

10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。

11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。

12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。

13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。

15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。

16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。

17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。

18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。

19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。

20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。

21. 数A×数B=它们的最大公因数×它们的最小公倍数。

22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。

23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。

25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。

26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。

27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。

希望我的回答能对你有所帮助咯。。。(*^__^*) 嘻嘻……

一、图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

二、因数与倍数

1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

三、长方体和正方体

1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12

4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2

正方体的表面积=棱长×棱长×6 用字母表示:S=

6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为100

7、体积:物体所占空间的大小叫做物体的体积。

8、长方体的体积=长×宽×高 用字母表示:V=abh 长=体积÷(宽×高) 宽=体积÷(长×高)

高=体积÷(长×宽)

正方体的体积=棱长×棱长×棱长 用字母表示:V= a×a×a

9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000

10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh

11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

把低级单位聚成高级单位,用低级单位数除以进率。

12、容积:容器所能容纳物体的体积。

13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米

14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

四、分数的意义和性质

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。

4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。

5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。

8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

9、最简分数:分子和分母只有公因数1的分数叫做最简分数。

10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。

12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

13、特殊情况下的最大公因数和最小公倍数:

①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。

14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。

15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。

五、分数的加法和减法

1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

六、打电话

1、逐个法:所需时间最多;

2、分组法:相对节约时间;

3、同时进行法:最节约时间。

关于“五年级数学必背公式有哪些?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(3)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 是雁丝吖的头像
    是雁丝吖 2026年01月23日

    我是鲸羚号的签约作者“是雁丝吖”

  • 是雁丝吖
    是雁丝吖 2026年01月23日

    本文概览:网上有关“五年级数学必背公式有哪些?”话题很是火热,小编也是针对五年级数学必背公式有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

  • 是雁丝吖
    用户012309 2026年01月23日

    文章不错《五年级数学必背公式有哪些-》内容很有帮助

联系我们:

邮件:鲸羚号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信